Zooming out a bit to follow the southeastward drift of the pyroCb cloud (below), the coldest cloud-top 10.8 µm infrared brightness temperature (BT) was -61ºC (darker red enhancement) at 1315 UTC — then the cloud tops remained in the -55 to -59ºC range (orange enhancement) for the next 6 hours or so. Leveraging the large difference between cold 10.8 µm and warm 3.92 µm BTs, NRL calculates a pyroCb index, which classified this feature as an “intense pyroCb” (1315 UTC | animation). The coldest 10.8 µm cloud-top BT of -61ºC roughly corresponds to an altitude of 13.5 km based on 12 UTC rawinsonde data from Port Elizabeth (plot | list).
Imagery from NOAA-19 at 1420 UTC (courtesy of René Servranckx) also revealed the warm (dark gray) Shortwave Infrared pyroCb signature, along with a minimum cloud-top infrared BT of -58.1ºC (below). A Suomi NPP VIIRS True Color Red-Green-Blue (RGB) image att 1230 UTC (below) was about a half hour before the formation of the pyroCb, but it did show a signature of smoke drifting southeastward off the coast. On the following day (30 October), a NOAA-20 VIIRS True Color image (below) showed the classic comma cloud signature of a mid-latitude cyclone south of the coast, with the band of cold-frontal clouds extending northward across Lesotho. Note the thick plume of smoke spreading eastward within the strong post-frontal westerly winds. A time series of of surface observations from George (below) supported the idea of a cold frontal passage: ahead of the front, temperatures rapidly rose to 104ºF/40ºC (with a dew point of 39ºF/4ºC) on 28 October about 1.5 hours prior to the formation of the pyroCb — then strong westerly winds (gusting to 40 knots/21 mps) with rising pressures and falling temperatures followed on 30 October. The pyroCb research community believes that this is the first documented case of a pyroCb on the African continent.